
Graph Based Image Processing
and Combinatorial Optimization

September 2018

Filip Malmberg



About the course

Course webpage: http:

//www.cb.uu.se/~filip/GraphBasedImageProcessing2018/

Format:

Lectures.
Computer exercises

No mandatory attendance.

Examination in the form of an individual project.

http://www.cb.uu.se/~filip/GraphBasedImageProcessing2018/
http://www.cb.uu.se/~filip/GraphBasedImageProcessing2018/


Course goals

After completing the course, you should:

be familiar with basic graph theory and how it applies to image
processing application.

have a good understanding of combinatorial optimization.

have a good understanding of state-of-the-art methods for solving
combinatorial optimization problems arising in image processing.

have some experience implementing and using such methods, and
applying them in your own research.



Teachers

Filip Malmberg

Fredrik Nysjö (computer exercises)



Examination: Individual project

To recieve credits for the course, you should:

Complete the computer exercises.

Complete an individual project:

Each participant should select a topic for his/her individual project.
The project can be applied or theoretical.
When you have decided on a topic, discuss this with me (Filip) to
ensure that the scope is appropriate.
Your work should be presented as a written report (∼ 4 pages).
Submit your report to me (Filip).



Background: Graph based image processing

Graphs have emerged as a unified representation for image analysis
and processing. In this course, we will give an overview of the
state-of-the-art in this field.

How and why do we represent images as graphs?

Graph-based methods for:

Image segmentation
Image restoration/filtering
Image registration / stereo matching
Scattered data interpolation



What is an image?

“We will sometimes regard a picture as being a real-valued, non-negative
function of two real variables; the value of this function at a point will be
called the gray-level of the picture at the point.”

Rosenfeld, Picture Processing by Computer, ACM Computing Surveys,
1969.



What is a digital image?

Storing the (continuous) image in a computer requires digitization, e.g.

Sampling (recording image values at a finite set of sampling points).

Quantization (discretizing the continuous function values).

Typically, sampling points are located on a Cartesian grid.



Generalized images

This basic model can be generalized in several ways:

Generalized image modalities (e.g., multispectral images)

Generalized image domains (e.g. video, volume images)

Generalized sampling point distributions (e.g. non-Cartesian grids)

The methods we develop in image analysis should (ideally) be able to
handle this.



Why graph-based?

Discrete and mathematically simple representation that lends itself
well to the development of efficient and provably correct methods.

A minimalistic image representation – flexibility in representing
different types of images.

A lot of work has been done on graph theory in other applications,
We can re-use existing algorithms and theorems developed for other
fields in image analysis!



Graphs, basic definition

A graph is a pair G = (V ,E ), where

V is a set.
E consists of pairs of elements in V .

The elements of V are called the vertices of G .

The elements of E are called the edges of G .



Graphs basic definition

An edge spanning two vertices v and w is denoted ev ,w .

If ev ,w ∈ E , we say that v and w are adjacent.

The set of vertices adjacent to v is denoted N (v).



Example

A

B

C D

Figure 1: A drawing of an undirected graph with four vertices {A,B,C ,D} and
four edges {eA,B , eA,C , eB,C , eC ,D}.



Example

A

B

C D

Figure 2: The set N (A) = {B,C} of vertices adjacent to A.



Images as graphs

Graph based image processing methods typically operate on pixel
adjacency graphs, i.e., graphs whose vertex set is the set of image
elements, and whose edge set is given by an adjacency relation on the
image elements.

Commonly, the edge set is defined as all vertices v ,w such that

d(v ,w) ≤ ρ . (1)

This is called the Euclidean adjacency relation.



Pixel adjacency graphs, 2D

Figure 3: A 2D
image with 4× 4
pixels.

Figure 4: A
4-connected pixel
adjacency graph.

Figure 5: A
8-connected pixel
adjacency graph.



Pixel adjacency graphs, 3D

Figure 6: A volume
image with
3× 3× 3 voxels.

Figure 7: A
6-connected voxel
adjacency graph.

Figure 8: A
26-connected voxel
adjacency graph.



Foveal sampling
“Space-variant sampling of visual input is ubiquitous in the higher
vertebrate brain, because a large input space may be processed with high
peak precision without requiring an unacceptably large brain mass.” [1]

Figure 9: Some ducks. (Image from Grady 2004)



Foveal sampling

Figure 10: Left: Retinal topography of a Kangaroo. Right: Re-sampled image.
(Images from Grady 2004)



Region adjacency graphs

Figure 11: An image divided into superpixels



Multi-scale image representation

Resolution pyramids can be used to perform image analysis on multiple
scales. Rather than treating the layers of this pyramid independently, we
can represent the entire pyramid as a graph.

Figure 12: A pyramid graph (Grady 2004).



Directed and undirected graphs

The pairs of vertices in E may be ordered or unordered.

In the former case, we say that G is directed.
In the latter case, we say that G is undirected.

In this course, we will mainly consider undirected graphs.



Paths

A path is an ordered sequence of vertices where each vertex is
adjacent to the previous one.

A path is simple if it has no repeated vertices.

A cycle is a path where the start vertex is the same as the end vertex.

A cycle is simple if it has no repeated vertices other than the
endpoints.

Commonly, simplicity of paths and cycles is implied, i.e., the word
“simple” is ommited.



Example, Path

A B C

D E F

G H I

Figure 13: A path π = 〈A,D,E ,H, I ,F ,E 〉.



Example, Simple path

A B C

D E F

G H I

Figure 14: A simple path π = 〈G ,H,E ,B,C 〉.



Example, Cycle

A B C

D E F

G H I

Figure 15: A cycle π = 〈A,B,E ,F ,E ,D,A〉.



Example, Simple cycle

A B C

D E F

G H I

Figure 16: A simple cycle π = 〈A,D,E ,B,A〉.



Paths and connectedness

Two vertices v and w are linked if there exists a path that starts at v
and ends at w . We use the notation v ∼ w

G
. We can also say that w

is reachable from v .

If all vertices in a graph are linked, then the graph is connected.



Subgraphs and connected components

If G and H are graphs such that V (H) ⊆ V (G ) and E (H) ⊆ E (G ),
then H is a subgraph of G .

If H is a connected subgraph of G , and there are no paths in G
linking a vertex in H to a vertex not in H, then H is a connected
component of G .



Example, connected components

Figure 17: A graph with three connected components.



Implementing graph-based algorithms

Even if we have formulated an algorithm on a general graphs, we do
not neccesarily have to allow arbitrary graphs in implementations of
the algorithm.

For standard pixel/voxel adjacency graphs, we can evaluate adjacency
relations without having to store the graph explicitly.



Implementing graph-based algorithms

If we do want to store the graph explicitly, there are some available
libraries:

For C++, I recommend the Boost Graph libraries. (www.boost.org)

For Matlab, check out the Graph Analysis Toolbox
(http://cns.bu.edu/ lgrady/software.html).



References
L. Grady.

Space-Variant Machine Vision — A Graph Theoretic Approach.

PhD thesis, Boston University, 2004.


